

Visualizamos un futuro más eléctrico, con energía más eficiente, renovable, confiable y sustentable

- Buscamos inspirar y liderar la transición energética, promoviendo políticas públicas y buenas prácticas de industria para el mejor uso y generación de energía.
- Somos el gremio que representa a las empresas de generación eléctrica que operan en Chile, integrado por un grupo amplio y diverso de empresas que producen el 90% de la electricidad del país.
- Nuestros socios desarrollan, construyen y operan proyectos en todas las fuentes de energía, renovables hidráulica, solar, geotermia, biomasa y eólica, como también termoeléctricas.

Tres pilares de un #FuturoEléctrico

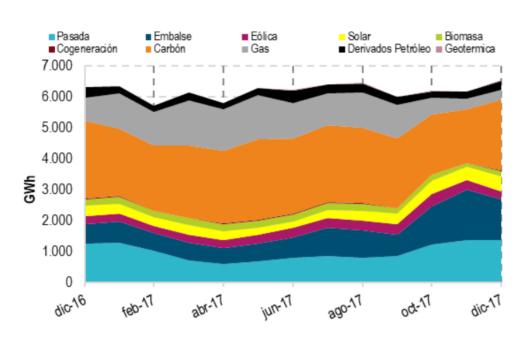
Aprovechar nuestras fuentes renovables

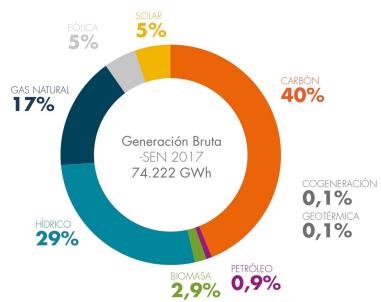
Electrificar la matriz energética

Sustentabilidad y legitimidad

Tres pilares de un #FuturoEléctrico

Aprovechar nuestras fuentes renovables


Electrificar la matriz energética



Sustentabilidad y legitimidad

En Chile en 2017 un 57% de la generación de electricidad fue termoelectricidad y 43% renovable, principalmente hidroeléctrica

Generación bruta anual de Chile en el Sistema Eléctrico Nacional

Fuente: Boletín del Mercado Eléctrico, Generadoras de Chile

¿qué hacer hoy si el 40% de la generación de Chile es a carbón?

Es necesario mitigar sus emisiones contaminantes locales

- En 2011 se introdujo una norma de emisiones de termoléctricas (DS13) que empezó a regir en 2013, que redujo las emisiones contaminante locales en:
 - 83% menos material particulado (PM)
 - 70% menos NOx (óxidos de nitrógeno)
 - 72% menos SO₂ (dioxido de azúfre)
- Implicó inversiones en tecnologías de abatimiento por cerca de USD 1.000 millones
- Permite evitar 282 muertes prematuras al año y genera
 332 millones de dólares en menores costos de salud

Fuente: División de Calidad del Aire, Ministerio de Medio Ambiente

El futuro de la generación eléctrica será renovable

Chile tiene un gran y muy diverso potencial de energía renovable en todo su territorio

• **Solar:** Capacidad actual: 2,4 GW.

Penetración estimada de 20 GW al 2050.

Potencial superior a 2.000 GW.

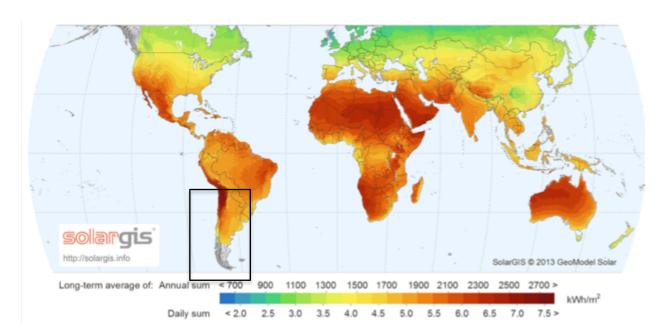
Energía eólica: Capacidad actual: 1,6 GW

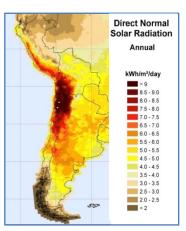
Penetración estimada de 20 GW al 2050

Geotermia: Capacidad actual: 48 MW

Penetración estimada de 2 GW al 2050

Hidroelectricidad: Capacidad actual: 6,7 GW (28%)


Potencial adicional de 16 GW


Fuente: El potencial de eólico, solar e hidroeléctrico de Arica a Chiloé, Ministerio de Energía, 2014

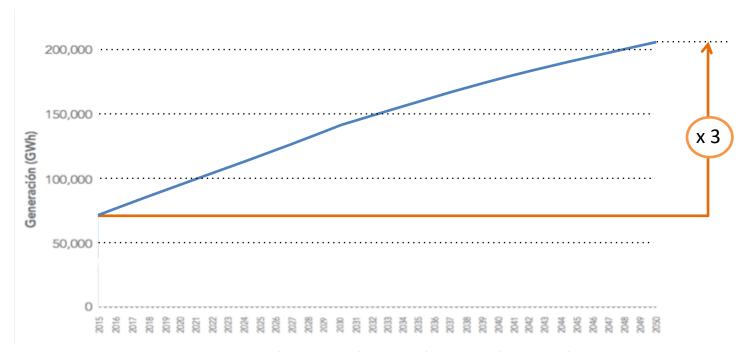
El desierto de Atacama tiene la mayor radiación solar que haya sido medida en el mundo

Generadoras

Ranking [kWh/m²/diario]

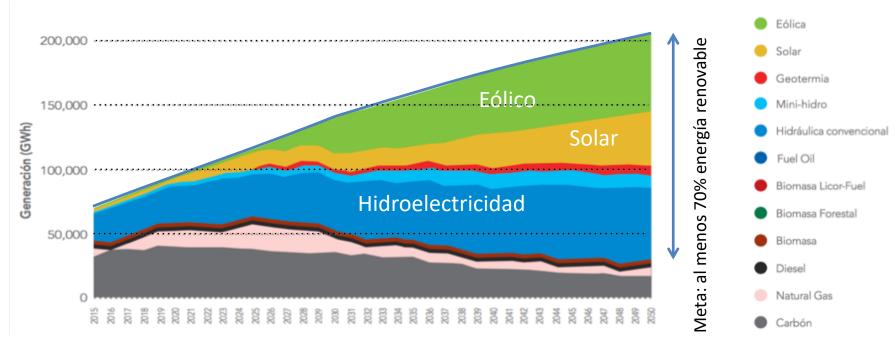
Pica, Chile	9,5
Calama, Chile	7,4
Crucero, Chile	7,1
Al-Fashir, Sudan	6,7
Guanajuato, Mexico	6,7

Fuente: NREL, 2005


2nd LAES | 17.10.2018

Las tecnologías eléctricas han caído radicalmente de precio en el último tiempo gracias a la innovación y el desarrollo

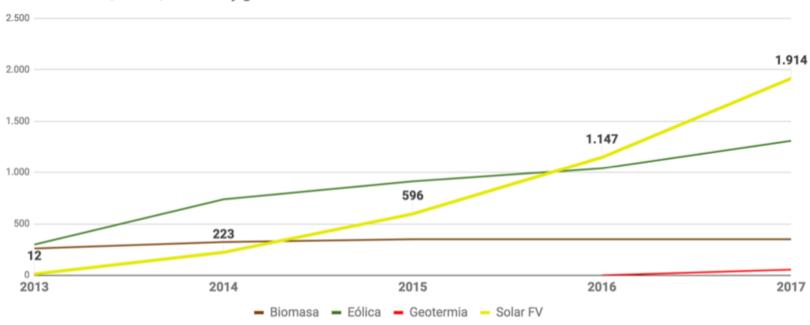
Caída en costos con respecto a 2008



La Política Energética de Largo Plazo de Chile proyecta que el consumo de electricidad crecerá entre 2 y 3 veces al 2050...

Fuente: Escenarios de demanda, Hoja de Ruta Energía 2050 • 1 TWh (terawatthora) = 1.000 GWh (Gigawatthora)

...y propuso en 2015 una meta de que al menos un 70% de la generación al 2050 será renovabe, pero mientras tanto...



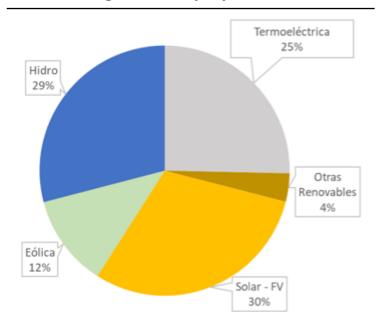
Fuente: Escenarios de generación, Hoja de Ruta Energía 2050 1 TWh (terawatthora) = 1.000 GWh (Gigawatthora) El futuro de la electricidad en Chile

... la capacidad de generación solar pasó de 12 MW en 2013 a 1.914 MW a fines de 2017, un crecimiento de 255% anual, y...

Fuente: Elaboración propia en base a información de Coordinador y CNE

...en 2018 mediante un acuerdo voluntario iniciamos un proceso de descarbonización de la matriz eléctrica, y...

GOBIERNO Y GENERADORAS ANUNCIAN FIN DE NUEVOS DESARROLLOS DE PLANTAS A CARBÓN

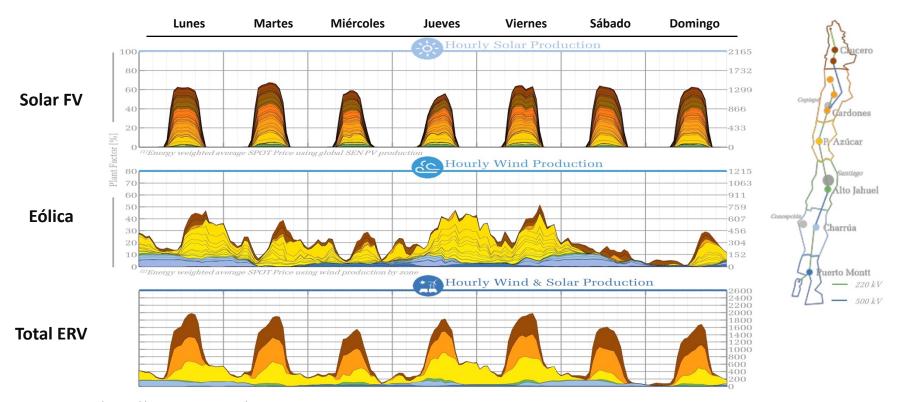

Se constituye además un grupo de trabajo para analizar y definir condiciones y un cronograma para el cese programado y gradual de generación eléctrica a carbón en el marco de la Política Energética 2050.

...nuevos estudios impulsados por Generadoras estiman que ya en 2030 el 75% de la generación eléctrica podría ser renovable.

- Las ERV (Energía Renovable Variable) solar fotovoltaica y eólica serán las principales nuevas fuentes de energía eléctrica
- Capacidad entre un 30% (+8.8 GW) y 65% (+16 GW)
- En 2030 energía solar pasaría a ser la principal fuente de generación eléctrica de Chile, superando la hidro.

Fuente: Estudio Análisis de largo plazo del SEN considerando ERV, PSR Moray, 2018. Resultados para escenario DMCM: demanda media, costos medios.

Matriz de generación proyectada al 2030⁽²⁾



'A SOLAR SAUDI ARABIA' While Trump promotes coal, Chile and others are turning to cheap sun power

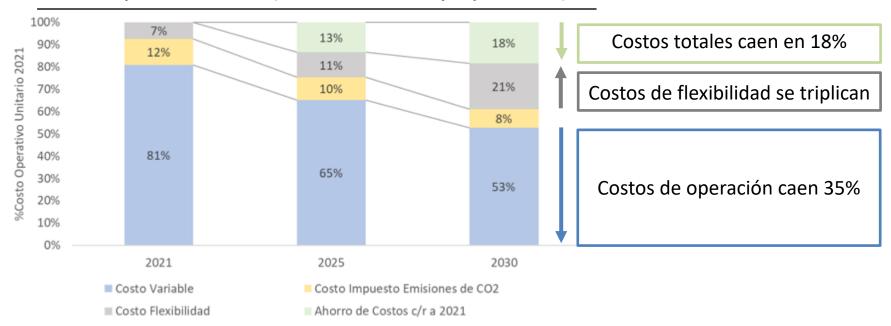
El gran desafío será gestionar la variabilidad solar FV y eólica

Producción de ERV (Energía Renovable Variable) en el SEN entre el 23 al 29 de abril de 2018

El gran desafío será gestionar las ERV solar FV y eólica

¿qué hacer cuando no hay sol o el viento no sopla?

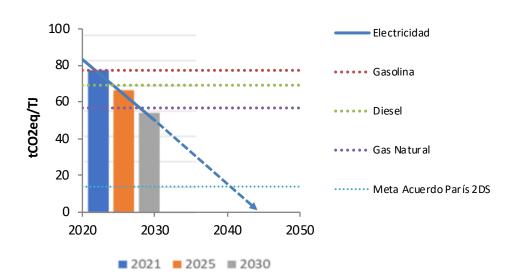
Es necesario desarrollar un sistema eléctrico mucho más flexible



19

Mayor penetración renovable bajará costos operativos totales, a pesar del significativo aumento de costos de flexibilidad

Costo operativo unitario⁽¹⁾ (variable, flexibilidad y impuesto CO2)


20

Fuente: Informe preliminar Estudio Análisis de largo plazo del SEN considerando ERV, PSR Moray, 2018. (1) Costo anual operativo dividido por la demanda anual en escenario DMCM: demanda media, costo medio

El sector generación eléctrica es el que más marcadamente se está descarbonizando y está en línea con el Acuerdo de París

- La reducción de la intensidad de emisiones de generación entre 27% y 40% entre 2021 y 2030
- En 2040 la electricidad podría alcanzar un factor de emisión de 14 tonCO2eq/TJ equivalente a la meta exigida por el Acuerdo de París al 2050 para todo el sector energía para cumplir con el escenario de 2°C (2DS).

Intensidad de emisiones electricidad vs combustibles fósiles

21

Fuente: Estudio Análisis de largo plazo del SEN considerando ERV, PSR Moray, 2018.

Resultados para escenario DMCM: demanda media, costos medios.

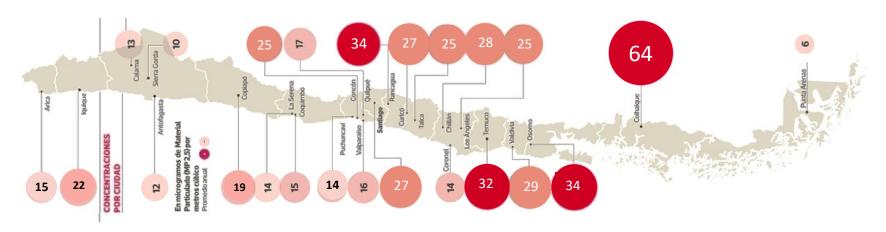
Nota: 100 tCO2/TJ = 0.36 tCO2/MWh

Nota: Comparación de energéticos no considera la mayor eficiencia energética de la transformación al uso final, por ejemplo de la electromovilidad que es 3-4 más eficiente que la combustión o COP de bombas de calor/frío.

Tres pilares de un #FuturoEléctrico

Aprovechar nuestras fuentes renovables

Electrificar la matriz energética


Sustentabilidad y legitimidad

Según la Encuesta Nacional del Medio Ambiente el mayor desafío ambiental de Chile es la contaminación del aire en las ciudades

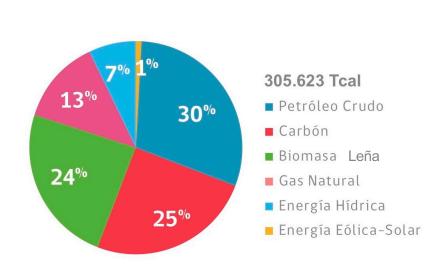
Responsable de al menos 4 mil muertes prematuras al año

Microgramos de Material Particulado (MP 2,5) por metro cúbico promedio anual

Fuente: (1) Encuesta Nacional del Medio Ambiente, Ministerio de Medio Ambiente, febrero 2018

(2) A nivel nacional. Estrategia 2014 – 2018, Planes de Descontaminación Atmosférica, Ministerio de Medio Ambiente

(3) Infografía La Tercera. 15 de febrero de 2015.


El gas petróleo, carbón y gas natural siguen dominando hoy las fuentes de energía primaria del mundo

La biomasa es (aun) relevante en Chile.

Mundo

Primary-energy consumption, worldwide Tonnes of oil equivalent, bn Non-hydro renewables -14 Nuclear -12 Hydroelectric 10 Natural gas 8 6 Coal 4 Oil 2 2000 05 10 1995 15

Chile

26

Fuente: Renewable energy: A world turned upside down, The Economist, 25.2.2017

Fuente: Balance Nacional de Energía, 2015

Cambios tecnológicos como los que están impulsando la transición energética ocurren más rápido de lo esperado

5ª Avenida Nueva York

1900: encuentre al automóvil

1913: encuentre al caballo

Fuente: US National Archives / George Grantham Bain Collection Fl futuro de la electricidad en Chile

Estamos frente a varias revoluciones de la transición energética

Electrificación

Tecnologías: movilidad eléctrica, cargadores inteligentes

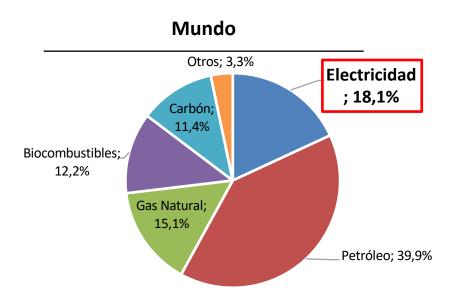
Descentralización

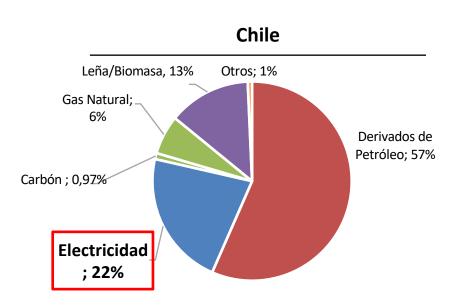
Tecnologías: paneles solares, almacenamiento, gestión de la demanda

Digitalización

Tecnologías: automatización, equipos, redes y aplicaciones inteligentes, internet de las cosas (IoT)

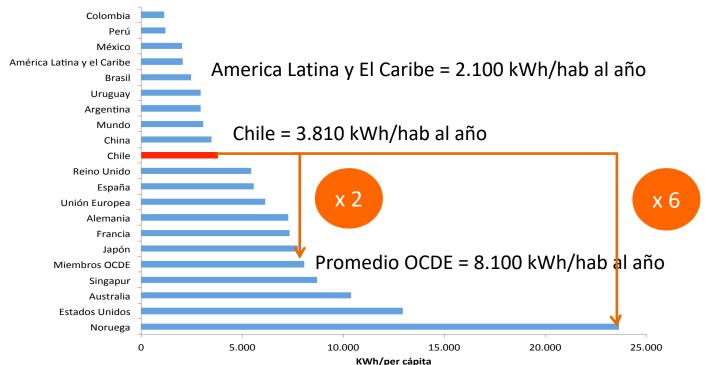
OP WER





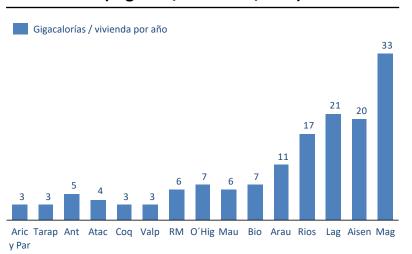
Sólo cerca del ~20% del consumo final de energía es electricidad

Principal energético consumido son los derivados del petróleo como diésel, bencina o parafina

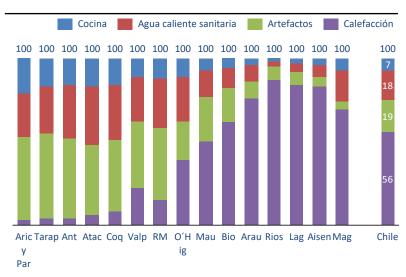


Fuente: Mundo: IEA, 2016; Chile: BNE, 2015

Chile tiene aun una gran brecha de consumo de electricidad repecto de países desarrollados



Fuente: Banco Mundial, 2015


El consumo energético de los hogares a lo largo de Chile es muy heterogéneo tanto en nivel de consumo como en tipo de uso

56% del consumo energético es calefacción y 18% es agua caliente (ACS)

Consumo de energía por hogar (Giga cal / vivienda / año)

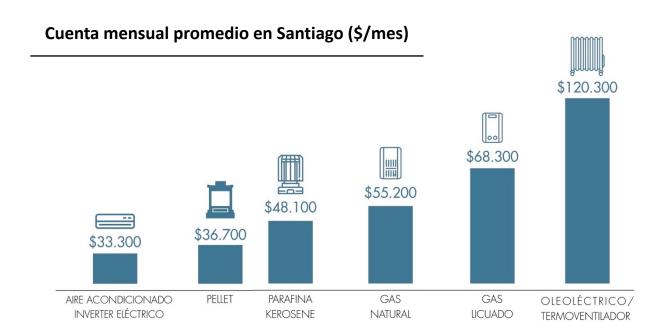
Usos de energía en hogares (%)

31

Fuente: Estudio Escenarios Prospectivos de Consumo Eléctrico, 2017 (en Base a BNE Regional y Censo 2012); "Estudio de usos finales y curva de oferta de conservación de la energía en el sector residencial de Chile", Corporación de Desarrollo Tecnológico (CDT), CCHC, 2010

Una adecuada elección de calefactores permite invertir mejor, reduciendo emisiones contaminantes intra y extradomiciliarias

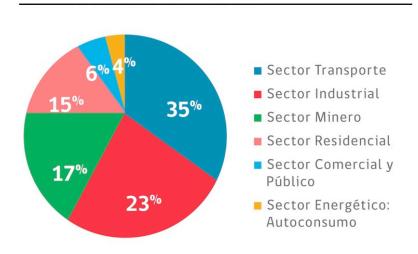
Inversión y emisiones por tipo de calefactor

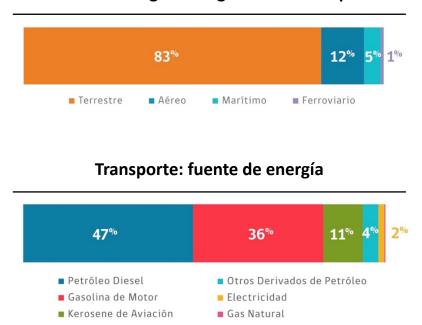

Nota: Emisiones de MP 2,5 estimadas para ciudades del sur de Chile, calefaccionando durante 8 horas al día para una confort de 18º y una demanda térmica mensual de 997 kWh

Fuente: Calefacción Sustentable. Ministerio de Medio Ambiente. 2016.

Reducir emisiones de los hogares por calefacción o agua caliente con electricidad (con la tecnología correcta) puede ser lo más asequible

Las bombas de calor (AC/Inverter) son 3 a 4 veces más eficientes y no generan emisiones


Fuente: Calefacción sustentable. Ministerio de Medio Ambiente, 2016


En Chile el transporte representa un 35% del consumo energético

Solo un 2% del consumo en transporte proviene de energía eléctrica

Consumo energético anual según sector

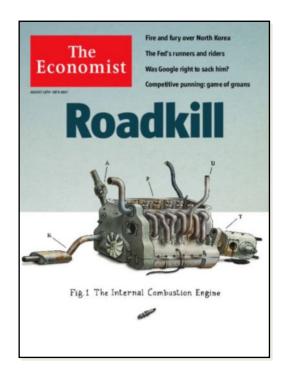
Consumo energético según modo transporte

Fuente: Balance Nacional de Energía (2015)

El futuro del transporte será eléctrico (y a hidrógeno)

Hoy solo un 2% del transporte es con energía eléctrica

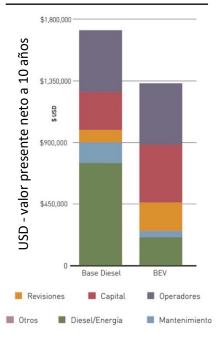
Beneficios de la electromovilidad


Eficiencia energética

Salud y descontaminación

Menores gases efecto invernadero

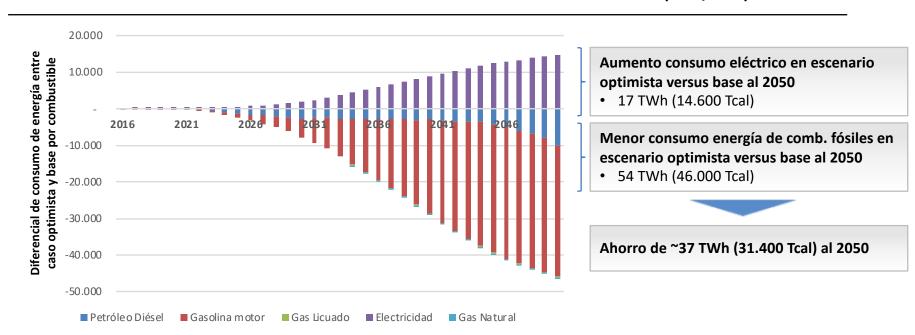
Fuente: The Economist


Es posible aspirar a un transporte público 100% eléctrico al 2030+

- 1 La licitación de Transantiago en curso considera la incorporación de buses que deberán ser cero emisión. (i.e. eléctricos)
- 2 La proyección de un estudio reciente¹ plantea que es posible incorporar 600 buses eléctricos gradualmente y alcanzar el 100% de la flota licitada en los futuros procesos de licitaciones (al 2030+ serían 6.500 buses eléctricos).
- 3 Transantiago reduciría de manera importante sus costos operacionales si el 100% de la flota fuera eléctrica:
 - Ahorros de operación de aproximadamente US\$ 140 millones al año
 - Inversión adicional (respecto de una flota convencional) en torno a los US\$ 1.500 millones
 - Inversión se recuperaría en un periodo aproximado de 11 años

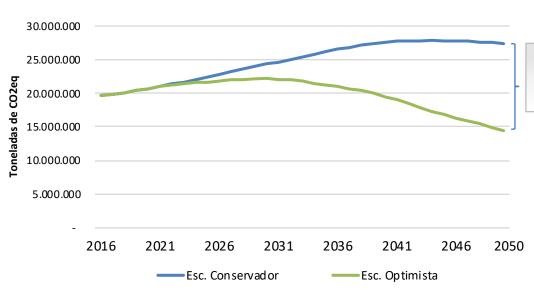
Fuentes:

- 1. Estudio Escenarios Usos Futuros de la Electricidad, Generadoras de Chile, 2017
- 2. Movilidad Eléctrica: Oportunidades para Latinoamerica, PNUMA, 2016


Bus diésel vs BEV²

Por cada 1 unidad adicional de electricidad consumida, la electromovilidad ahorrará 3 unidades de energía derivada del petróleo

Aumento consumo eléctrico vs reducción consumo combustibles fósiles (Tcal / año)

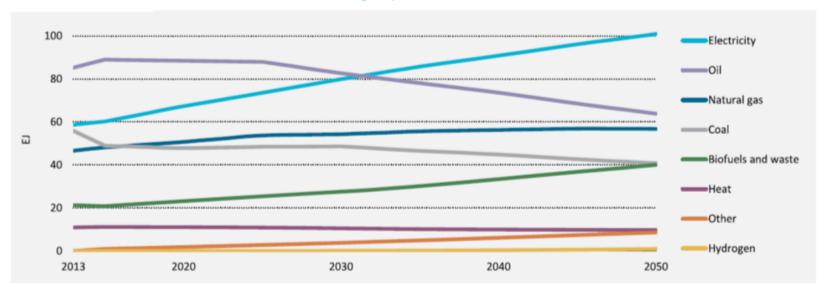


Fuente: Estudio Escenarios Prospectivos de Consumo Eléctrico, 2017

La mayor penetración de vehículos eléctricos permitirá revertir la tendencia al alza de las emisiones de GEI del transporte terrestre

Toneladas de CO2 eq

2030: reducción del 9% de emisiones GEI


2050: reducción del 47% de las emisiones GEI

Hacia el 2030 se espera que la electricidad sea la principal fuente de energía consumida en las ciudades en el mundo

Demanda urbana de energía primaria en el escenario 2DS*

Fuente: Agencia Internacional de Energía (IEA, sigla en inglés). www.iea.org/statistics

^{*} Escenario 2DS (Two Degrees Scenario): objetivo de la IEA que limita el calentamiento medio por emisiones de CO2 a 2º C

Tres pilares de un #FuturoEléctrico

Aprovechar nuestras fuentes renovables

Electrificar la matriz energética

Sustentabilidad y legitimidad

Requerimos más confianza, legitimidad y mejor diálogo en todos los niveles y ámbitos de las políticas públicas

- Acuerdos y políticas públicas compartidas, basadas en evidencia y de largo plazo
- Diálogo público privado reglado (ej. ley de lobby)
- Estado, empresas y ONGs más transparentes
- Incorporación de estándares de derechos humanos y empresa en su relación con actores
- Diálogo temprano y permanente con las comunidades, buscando crear confianza, legitimidad, valor compartido y una visión de largo plazo.
- Formación ciudadana en energía

La transición energética hacia un #FuturoRenovable nos plantea nuevos desafíos territoriales

- Recursos en zonas lejos del consumo y/o en territorios prístinos
- Descentralización, participación y creación de valor compartido con las comunidades locales
- Pueblos indígenas: derechos, costumbres y prácticas
- Cambio de paradigma hacia un ordenamiento territorial
- Gestión integrada de cuencas, uso multipropósito de embalses y adaptación al cambio climático
- Avanzar hacia impacto en biodiversidad neta cero

Tres pilares de un #FuturoEléctrico

Aprovechar nuestras fuentes renovables

Electrificar la matriz energética

Sustentabilidad y legitimidad

